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Fig. 1: The whole active reconstruction process in a simulated supermarket scene. We deployed our active high-fidelity reconstruction system
on a simulated quadrotor with an RGB-D sensor. The colored curves illustrate the executed trajectories of the drones. We demonstrate
the reconstruction result including the whole rendered scene and details rendered at three views.

Abstract— Active reconstruction technique enables robots to
autonomously collect scene data for full coverage, relieving
users from tedious and time-consuming data capturing process.
However, designed based on unsuitable scene representations,
existing methods show unrealistic reconstruction results or
the inability of online quality evaluation. Due to the recent
advancements in explicit radiance field technology, online active
high-fidelity reconstruction has become achievable. In this
paper, we propose GS-Planner, a planning framework for active
high-fidelity reconstruction using 3D Gaussian Splatting. With
improvement on 3DGS to recognize unobserved regions, we
evaluate the reconstruction quality and completeness of 3DGS
map online to guide the robot. Then we design a sampling-based
active reconstruction strategy to explore the unobserved areas
and improve the reconstruction geometric and textural quality.
To establish a complete robot active reconstruction system, we
choose quadrotor as the robotic platform for its high agility.
Then we devise a safety constraint with 3DGS to generate
executable trajectories for quadrotor navigation in the 3DGS
map. To validate the effectiveness of our method, we conduct
extensive experiments and ablation studies in highly realistic
simulation scenes.
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I. INTRODUCTION

Active high-fidelity 3D reconstruction involves robots cre-
ating an accurate, detailed, and realistic digital representation
of an object or scene completely, efficiently, and safely.
Maintaining intricate visual fidelity, this technique demon-
strates significant practical value in scene inspection, virtual
game development, and cultural heritage preservation.

The choice of an appropriate scene representation is
the cornerstone of an active high-fidelity 3D reconstruction
robotic system, with the following key requirements:

• Precision and photorealism: High-fidelity reconstruc-
tion requires the scene representation to accurately
represent geometric and textural information, which
enables a more realistic portrayal of the scene.

• Real-time fusion: New scene information is gathered
step by step within the active reconstruction process.
The scene representation should fuse the newly col-
lected data in real time to guide the robot’s reconstruc-
tion and provide information about occupied volumes
for safe robot navigation.

• Online evaluation: To guide the robot in active recon-
struction, the scene representation requires online eval-
uation of both reconstruction quality and completeness.



Fig. 2: An overview of our active high-fidelity reconstruction system. With 3DGS as scene representation, the unobserved regions, as well
as the geometric and textural information of the built map can be feedback in real time for online reconstruction quality and completeness
online evaluation. The proposed active reconstruction strategy guides the robot to collect new scene information to build a complete
high-fidelity 3DGS map.

The quality assessment should include both geomet-
ric and textural aspects. The completeness evaluation
demands the representation to identify observed and
unobserved portions of the scene.

However, commonly used in traditional active reconstruc-
tion [1]–[3], grid map can only describe coarse structures and
lack color and texture information. Mesh and surfel cloud
fusion and optimization pose challenges due to their inherent
complexities. Neural Radiance Field (NeRF) [4], which re-
cently emerged as a high-fidelity scene representation, often
requires extensive training times and substantial resources
for rendering, making online evaluation difficult.

3D Gaussian Splatting (3DGS) [5], which recently
emerged as a transformative technique in the explicit radi-
ance field, fully meets the above requirements with specific
advantages as follows: (a) High visual quality and precise
geometry: 3DGS represents a scene with Gaussian blobs stor-
ing rich textural and explicit geometric information, ensuring
high visual fidelity and precise geometry. More importantly,
with learnable 3D Gaussians, 3DGS preserves properties of
continuous volumetric radiance fields, which is essential for
high-quality image synthesis. (b) Efficient fusion: Benefiting
from explicit representation, 3DGS’s frustum culling strategy
and adaptive Gaussian densification make it efficient to
incrementally fuse the new observed data, showing com-
parable quality and superior efficiency surpassing neural-
based methods. (c) Fast rendering: 3DGS’s highly parallel
”splatting” rasterization, along with the avoidance of the
computational overhead associated with rendering in empty
space, enables fast frame rates and high-quality rendering for
online evaluation.

Due to 3DGS’s appealing features, we propose a Gaussian-
Splatting-based planning framework (GS-planner) to achieve
active high-fidelity reconstruction with real-time quality and
completeness evaluation to guide the robot’s reconstruction.
Firstly, to evaluate the built 3DGS within the reconstruction
process, we devise evaluation terms for both reconstruction
completeness and quality. Existing 3DGS can only represent

occupied space, making it difficult to evaluate the complete-
ness. To efficiently identify unobserved portions of the scene,
we integrate the unknown voxels into the splatting-based
rendering process. Secondly, we design a sampling-based
active exploration strategy to guide the robot to explore the
unobserved areas and improve the geometric and textural
quality of the 3DGS map. Thirdly, to form a complete robotic
active reconstruction system, we select quadrotor as the
robotic platform for its high agility. Leveraging the differen-
tiable nature and explicit representation properties of 3DGS,
we devise a differentiable obstacle-avoidance cost with the
3DGS map. Furthermore, we form an autonomous navigation
framework capable of generating collision-free and dynamic-
feasible trajectories for quadrotors. Overall, based on the
state-of-the-art dense 3DGS SLAM system SplaTam [6], we
propose GS-Planner, a planning framework for active high-
fidelity reconstruction with 3DGS as scene representation. In
summary, the following are the contributions:

1) We propose the first active 3D reconstruction system
using 3DGS with online evaluation.

2) We design evaluation metrics for reconstruction com-
pleteness and quality, applying them in a sampling-
based autonomous reconstruction framework.

3) We devise a safety constraint with 3DGS and form a
trajecotry optimization framework in the 3DGS map.

4) We conduct extensive simulation experiments to vali-
date the effectiveness of the proposed system.

II. RELATED WORKS

A. High-fidelity Reconstruction

To achieve high-fidelity reconstruction, several different
scene representations have been employed, such as planes,
meshes, and surfel clouds. Recently, Neural Radiance Field
(NeRF) [4] has gained prominence in this field due to
its exceptional capability of photorealistic rendering, which
can be divided into three main types: MLP-based methods,



Fig. 3: An illustration of the completeness evaluation. (a). A partially reconstructed scene. Scene information has been collected only at
the observed viewpoint. The colored grid illustrates the completeness gain from 360-degree summation at different positions at a height
of z = 1m. (b). The location of two candidate viewpoints. The z-axis direction is aligned with the camera’s optical axis. (c). 360-degree
panoramic image of the completeness gain of the candidate viewpoint 1 and 2. The generation of 360-degree gain facilitates the subsequent
determination of the optimal viewpoint yaw direction.

hybrid representation methods, and explicit methods. MLP-
based method [7] offers scalable and memory-efficient map
representations but faces challenges with catastrophic forget-
ting in larger scenes. Hybrid representation [8, 9] methods
combine the advantages of implicit MLPs and structure
features, significantly enhancing the scene scalability and
precision. As for the explicit method proposed in [10], it
stores map features in voxel directly, without any MLPs,
enabling faster optimization.

While NeRF excelled in photorealistic reconstruction [11],
NeRF methods are computationally intensive [12]–[14].
NeRF often requires extensive training times and substantial
resources for rendering, which contradicts the need to feed
the model back into the active reconstruction decision loop in
real time. Instead of representing maps with implicit features,
3DGS [5] enables real-time rendering of novel views by its
pure explicit representation and the novel differential point-
based splatting method. This technology has been applied in
online dense SLAM with 3DGS as the scene representation
and reconstructs the scene from RGB-D images [6, 15].

B. Active Reconstruction System

Active reconstruction systems put data acquisition in the
decision loop, using the results for evaluation, and then
guiding the robot for further data acquisition. Based on
the representations of 3D models, these approaches can be
categorized into voxel-based methods [1]–[3], surface-based
approaches [16]–[18], and neural-based approaches [11].

Voxel-based methods [1, 3] aim to reconstruct the com-
monly used grid map, which is an axis-aligned and compact
spatial representation. Surface-based approaches [16]–[18]
model the environment with a set of surfaces. However,
these methods only evaluate the reconstruction complete-
ness but ignore color and texture information. There are
also active reconstruction methods based on implicit neural
representations. NeurAR [11] learns the neural uncertainty
for view planning. However, limited by the high compu-
tation consumption of the implicit neural representation,

NeurAR takes about 50-120 seconds for model optimization
and uncertainty evaluation between view steps, leading to
frequent and prolonged halts in robot operation. 3DGS, as
a newly emerged method, is well-suited for serving as a
scene representation for active high-fidelity reconstruction.
However, there is currently no active reconstruction robot
system designed based on its excellent characteristics.

III. SYSTEM OVERVIEW

Active high-fidelity reconstruction requires a robot to visit
a series of viewpoints to collect scene information and build
a realistic digital representation. As shown in Fig. 2, the
proposed active reconstruction system uses 3DGS as scene
representation, and the robot can collect RGB-D images with
the corresponding observation poses. Leveraging the efficient
fusion and real-time rendering advantages of 3DGS, we
conduct an online evaluation for possible future viewpoints.
Such online evaluation feedback guides the active view
planning module (Sec. IV) to generate a series of safe and
high-information-gain viewpoints. To navigate the robot to
the selected viewpoints, we further propose an autonomous
navigation framework (Sec. V) with a safety constraint
formulated with the 3DGS map.

IV. ACTIVE VIEW PLANNING WITH 3DGS MAP

In this section, we first introduce the 3DGS representa-
tion (Sec. IV-A). Then, a completeness evaluation method
(Sec. IV-B) and a quality evaluation method (Sec. IV-C)
are proposed to capture regions with poor coverage and
quality respectively. In the following, we design a sampling-
based active view planning algorithm to guide the robot to
reconstruct unobserved regions and improve the quality of
the built map (Sec. IV-D).

A. 3DGS Map Representation

We use the existing method SplaTam SLAM [6] for 3DGS
real-time reconstruction. The scene is represented as a set of
isotropic 3DGS. Each 3D GS is defined by center position



Fig. 4: An instance of the quality evaluation. (a). The generation of the RGB textural loss between the input RGB image and rendered
RGB image. (b). The generation of the depth loss between the input depth image and rendered depth image. (c). The weighted sum of
the RGB loss and depth loss. (d). We project the quality gain to the 3D grid in the world frame to store.

µ ∈ R3, radius r ∈ R, RGB color c ∈ R3, and opcity o ∈ R.
The opacity function α of a point x ∈ R3 computed from
each 3DGS is described as:

α (x, o) = o exp

(
−|x− µ|2

2r2

)
. (1)

In order to optimize the parameters of 3D Gaussians to
represent the scene, we need to render them into images
in a differentiable manner. The final rendered color can be
formulated as the alpha-blending of N ordered points that
overlap the pixel,

Cpix =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj). (2)

We render the depth in the same way

Dpix =

N∑
i=1

diαi

i−1∏
j=1

(1− αi), (3)

where di represents the depth of the i-th 3D Gaussian’s
center, which is equal to the z-coordinate of its center
position in camera coordinate system.

B. Completeness Evaluation

To support full coverage of the scene, we introduce
the completeness evaluation for candidate viewpoints. This
evaluation requires to recognize unobserved space. However,
the existing 3DGS only preserves information regarding the
occupied volume. To address this limitation, we maintain a
voxel map to represent unobserved volume, and integrate
it into the splatting-based rendering. Then, we can effi-
ciently calculate model-consistent pixel-level completeness
gain within the 3DGS rendering process.

To be specific, given a collection of 3D Gaussians and a
candidate viewpoint, first all Gaussians will be sorted by
their depth. With the sorted Gaussians, depth image can
be efficiently rendered by alpha-compositing the splatted
2D projection of each Gaussian in order in pixel space.
In this rendering process, we can determine whether there
exists an unobserved region between adjacent Gaussians

Fig. 5: A 2D illustration of the 3D completeness evaluation. Given
a collection of 3D Gaussians and a candidate viewpoint, we can
get unobserved regions within the splatting-based rendering. The
unobserved regions are weighted by transmittance, which is equal
to the accumulated Guassians’ opacity along the ray.

utilizing the maintained unobserved voxel. And the volume
of the unobserved region corresponding to each pixel can
be approximately calculated by the basic frustum volume
formula. Furthermore, considering that Gaussians have dif-
ferent opacities, we evaluate the visibility of the unobserved
volume by applying a transmittance weight, as shown in
Fig. 5. Finally, we get the completeness information gain
of each pixel as

Vpix =

n∑
i=1

Vi

mi∏
j=1

(1− αj), (4)

where n is the number of unobserved volumes along the ray,
mi is the number of the related 3D Gaussians before the i-th
unobserved volume Vi,

∏mi

j=1 (1− αj) is the transmittance
weight. For a certain unobserved volume Vi, as shown in
Fig. 6, we approximate its volume as a frustum:

Vi =
1

3
(Sin,i +

√
Sin,iSout,i + Sout,i)(dout,i − din,i), (5)

where din,i and dout,i respectively represent the depths of
the entry and exit of the i-th unobserved volume. Sin,i and
Sout,i represent the base areas of Vi, which are equal to the
projected areas of the pixel at the entry plane of depth din,i



and the exit plane of depth dout,i. S = d2/f2, where f is
the camera focal length.

Fig. 6: A 3D illustration of the unobserved volume calculation.

Because we integrate the evaluation into the splatting-
based rendering, this calculation process is parallelized and
efficient. To illustrate the completeness evaluation intuitively,
we give an instance shown in Fig. 3, demonstrating the
guidance of completeness evaluation in viewpoint selection.

C. Quality Evaluation
Quality evaluation aims to identify reconstructed regions

with poor texture and geometry accuracy. This evaluation
includes two steps: loss caching and loss reprojection.

Loss caching: Leveraging the real-time rendering of
3DGS, it is straightforward to compute the disparity between
the reconstructed model and the actual scene. As shown
in Fig. 4, we project the loss L from the image space to
the world space, and cache the loss into occupied voxels.
Specifically, L is a weighted sum of L1 loss both on the
depth and the color renders:

L = L1(D) + λCL1(C), (6)

where λC is the weight coefficient.
Loss reprojection: Given a candidate viewpoint, we repro-

ject the loss cached in the occupied voxels to the image space
by conducting 360-degree ray-tracing. The loss indicates the
quality information gain of both texture and geometry:

According to Sec. IV-B and Sec. IV-C, we finally obtain an
overall 360-degree information gain of a given viewpoint by
calculating the weighted sum of completeness and quality.
Then we use the sliding-window summation to find the
optimal yaw angle of each viewpoint.

D. View Planning with a View Library
To enable a robot’s full reconstruction of a scene in high

quality, a series of reasonable viewpoints with position and
yaw angle need to be generated for sequential navigation.
We design a sampling-based view planning method with a
view library to generate and cache viewpoints for evaluation.
The whole view planning algorithm is listed as Alg. 1.

To be specific, we first acquire nearby cached viewpoints
Vnear in the view library VL, which stores unvisited view-
points and their information gain (Line 1). Their information

Algorithm 1 Active View Planning with a View Library

Require: current pose p, view library VL;
1: Vnear,Gnear ← subset of VL nearby current pose p;
2: for vi ∈ Vnear, gi ∈ Gnear do
3: gi = UpdateGain(vi);
4: end for
5: Vc ← RRTSample(p,Vnear);
6: Gc ← Evaluation(Vc);
7: for vi ∈ Vc, gi ∈ Gc do
8: if gi < glb then
9: Vc ← Vc \ vi;

10: VL← VL \ {vi, gi};
11: continue;
12: end if
13: if Overlap(vi,Vnear) < ϵol and gi > gthres then
14: VL = VL ∪ {vi, gi};
15: end if
16: end for
17: Result local goal: pgoal;
18: if Vc! = ∅ then
19: pgoal = BestBranchNode(Vc);
20: else
21: pgoal = Select from VL;
22: end if
23: Return pgoal;

gains are updated with new sensor data (Line 2-4). We
use the expansion part of RRT* to sample potential future
viewpoints Vc (Line 5). The sampled viewpoints that are too
close to obstacles will be deleted. And the optimal yaw angle
of each viewpoint is determined by the above introduced
sliding window method. Vnear are added and connected to
the expanded trees in the sampling process. By real-time
rendering at each viewpoint in Vc via 3DGS, we calculate its
information gain efficiently (Line 6). The viewpoints whose
gain below threshold glb will be removed (Line 8-12). And
high-information-gain viewpoints that are novel enough from
others in VL will be cached (Line 13-15). The node on the
best branch will be selected as the next local goal (Line 19).
Moreover, if there are no valid nearby candidates, the local
goal will be selected from VL (Line 21). When the VL
becomes empty, the reconstruction process is accomplished.

V. TRAJECTORY OPTIMIZATION IN 3DGS MAP

3DGs’s explicit representation and precise geometry make
safe robot navigation with the 3DGS map possible. Lever-
aging the differentiable nature of 3D Gaussian, we devise a
safety constraint with the 3DGS map, and integrate it into a
quadrotor trajectory optimization framework.

A. Safety Constraint with 3DGS

In 3DGS, Gaussians are defined with opacity as presented
in Sec. IV-A. The opacity measures the probability of light
being obstructed while passing through an object. We assume



the probability of terminating a light ray provides a strong
indication of the probability of terminating a mass particle.
Thus, for a robot pose p and a certain Gaussian with opacity
o, we formulate a chance constraint to ensure safety:

α(p, o) < cthr, (7)

where α(·) presents the opacity function defined in Eq. 1,
and cthr presents the threshold of collision probability. cthr
is equal to the value of α(·) at a distance of (3r + Rrobot)
(3σ rule) from its mean µ when the opacity o = 1:

cthr = exp

(
−3r +Rrobot

2r2

)
, (8)

where Rrobot is the geometric bounding sphere radius. Intu-
itively, it means that we hope every point on the trajectory
is at a distance greater than a safety radius Rs from the
Gaussian mean point. Rs is weighted by o of the Gaussian,
and equals to (3r +Rrobot) when o = 1.

For the follow-up trajectory optimization, we provide the
corresponding collision-avoidance cost for each point p on
the trajectory as

Jc(p) =
k∑

i=0

f(αi(p, oi)− cthr), (9)

where f(x) = max (x, 0)
3, and k is the number of

nearby Gaussian elements in the 3DGS map. The collision-
avoidance cost applied on the points on the trajectory during
optimization with different opacity Gaussian is shown in
Fig. 7. This differentiable cost is friendly for the follow-up
trajectory optimization with analytical gradient written as

∂Jc(p)
∂p

=

k∑
i=0

3(αi(p)−cthr)2oiexp
(
−|p− µi|2

2r2i

)
(
µi − p

2r2i
).

(10)

B. Trajectory Optimization Formulation

Aimed to generate full-state collision-free and dynamic-
feasible trajectories for quadrotors, we use MINCO [19]

Fig. 7: The collision-avoidance cost applied on the trajectory with
different opacity Gaussian. Each point on the trajectory is hoped
to be at a distance greater than a safety radius Rs from the mean
point of the Gaussian. Rs is weighted by the opacity o of different
Gaussians.

as trajectory representation and optimize spatial-temporal
trajectories in a reduced space with differential-flat outputs
z = [pT , ϕ]T ∈ R3 × SO(2), where ϕ is the Euler-
yaw angle and position p = [px, py, pz]

T . And we further
define the flat outputs and their derivatives z[s−1] ∈ Rms

as z[s−1] := (zT , żT , ..., z(s−1)T )T . To generate a trajectory
z(t) : [0, T ] 7→ Rm, we formulate the trajectory optimization
problem as

min
z,T
JE =

∫ T

0

∥z(s)(t)∥2dt+ ρT, (11a)

s.t. z[s−1](0) = z̄s, z[s−1](T ) = z̄e, (11b)

∥p(1)(t)∥ ≤ vmax,∀t ∈ [0, T ], (11c)

∥p(2)(t)∥ ≤ amax,∀t ∈ [0, T ], (11d)

∥ϕ(1)(t)∥ ≤ ϕmax,∀t ∈ [0, T ], (11e)
αi(p, oi) < cthr,∀i ∈ {1, . . . , k},∀t ∈ [0, T ], (11f)

where Eq. 11a trade off the smoothness and aggressiveness,
and ρ is the time regularization parameter. Here we adopt
s = 3 for jerk integral minimization. Eq. 11b is the boundary
conditions at start and end time. z̄s and z̄e are the initial and
end state, respectively. Eq. 11c, Eq. 11d and Eq. 11e are
the dynamic feasibility constraints, where vmax, amax and
ϕmax are the velocity, acceleration and yaw rate limits. Eq.
11f is the safe constraint defined in Eq. 7. αi(·) is the opacity
function of the i-th Gaussian element with opacity oi.

This problem can be transformed into an unconstrained
optimization problem [19] written as

min
z,T
JE +

∫ T

0

JGdt, (12)

where JG is the penalty function corresponding to the
inequality constraints Eq. 11c, Eq. 11d, and Eq. 11f. And
JG includes Jc defined in Eq. 10. With analytical gradients,
the problem is then efficiently solved by the L-BFGS [20].

VI. EXPERIMENTS

A. Implementation Details

We run our active reconstruction system on a desktop PC
with a 2.90GHz Intel i7-10700 CPU and an NVIDIA RTX
3090 GPU. And an additional laptop PC with a 2.50 GHz
AMD Ryzen 9 7945HX and an NVIDIA GeForce RTX 4080
Laptop GPU is utilized to execute the high-fidelity simulation
developed with Unity. The two devices are connected via a
wired network connection. In Unity, the quadrotor equipped
with an RGB-D sensor will provide real-time RGB-D images
with a resolution of 640× 480 and a perceptual range from
0.5m to 3m. We add a uniform distribution noise of 2cm to
the depth and assume the corresponding camera poses of the
images are known.

The 3DGS mapping module builds upon SplaTam [6] by
incorporating a real-time data streaming format. For view
planning, we evaluate 10 viewpoints at each iteration and
select the branch with the optimal viewpoint as the seed
for the next iteration. For trajectory optimization, the robot



Fig. 8: Qualitative comparison of the completeness evaluation between using 3DGS rendering and using voxel-based ray-casting. When
the robot arrives at the current viewpoint, due to its oblique view angle, the observation of items on the left front shelf is incomplete.
The evaluation with 3DGS rendering is high-fidelity and high-efficiency, while the evaluation with voxel-based ray-casting is coarse and
time-consuming. The fine completeness evaluation can correctly guide the robot to collect new information for improvement.

radius is fixed at 0.5m. And the safety constraint is computed
by considering the 3DGS near the initial trajectory within
the duration of [0s, 1s], selected using the Axis-aligned
Bounding Box (AABB) method. The maximum velocity
limit is 1.0m/s, the maximum acceleration limit is 2.0m/s2,
and the maximum yaw rate limit is πrad/s.

B. Simulation Result and Analysis

To validate our proposed method, we build a high-fidelity
simulation environment via Unity engine. As shown in Fig. 1,
this 22.0m × 14.0m × 3.2m supermarket scene contains a
variety of items with rich texture information. We present
the whole reconstruction process and the trajectory of the
quadrotor. The quadrotor takes 343 seconds to complete
the whole reconstruction. The reconstructed details are also
demonstrated through rendered RGB and depth images. We
can see from the reconstruction results that the reconstruction
of the entire scene is complete and high-fidelity, retaining
rich texture and structural information, and exhibiting a
strong sense of realism.

C. Comparision and Ablation Study

To validate the effectiveness of the proposed reconstruc-
tion evaluations, we compare our method with traditional
ones and conduct an ablation study.

1) Completeness Evaluation: Given a viewpoint, tradi-
tional methods for computing information gain typically rely
on voxel-based raycasting [1]–[3]. This involves maintain-
ing a grid map that represents observed and unobserved
areas, and performing raycasting at candidate viewpoints
to measure the volume of unobserved areas. However, this
method is limited by the voxel resolution for occupied

TABLE I: Completeness Evaluation Methods Comparison

Voxel
Resolution (m) Scenario

Time (ms)

Voxel-based Raycast Ours

0.1
Sparse 347.32 1.86

Dense 342.10 2.11

0.15
Sparse 226.29 1.83

Dense 230.21 2.33

0.2
Sparse 183.36 1.71

Dense 176.01 2.31

and unobserved region representation, and its computational
complexity is affected by discrete sampling steps. In contrast,
we integrate the completeness evaluation calculation into the
splatting process. Leveraging efficient Gaussian sorting and
precise description of occupied geometry, we achieve high-
fidelity high-efficiency completeness gain calculation. Fig. 8
shows an instance of the completeness gain calculation by
different methods. Tab. I compares the computation speeds
under various voxel resolutions, highlighting the notably
higher efficiency of our 3DGS-based method. In the experi-
ments, the raycasting step for the voxel-based method is half
of the voxel resolution.

2) Quality Evaluation: To validate the impact of quality
gain, we designed ablation experiments to calculate the
information gain of candidate viewpoints with and without
quality gain. And we further compute their corresponding
optimal yaw angles. As the result shown in Fig. 9, the quality
gain correctly guides the generation of the information gain
and the optimal yaw angle. With quality consideration, our
active reconstruction system can improve the regions of the
built scene with poor geometry and texture.



Fig. 9: Ablation of the quality gain. (a). The information gain regarding only completeness at the height of z = 1 m. Optimal yaw
angles corresponding to the candidate viewpoints point towards unobserved areas. (b). Considering both quality and completeness in the
information gain. It can be observed that, for viewpoints around two shelves, the quality gain tends to encourage further observation of
shelves that can still improve the reconstruction quality.

VII. CONCLUSION AND FUTURE WORK

In this paper, we adopt the recently emerged 3DGS
technique to achieve an active high-fidelity reconstruction
system. To online evaluate the reconstruction result as re-
construction strategy feedback, we respectively design com-
pleteness and quality evaluation methods with 3DGS. Then
we propose a sampling-based active view planning method to
generate a series of optimal viewpoints. For robot navigation
in 3DGS map, we design a differentiable chance constraint to
ensure safety, and form a quadrotor trajectory optimization
framework. For future work, we are going to deploy our
system on real robotic platforms and try to reduce the GPU
memory consumption of 3DGS and improve its efficiency.
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